
1. Introduction
Saharan dust is the largest contributor to airborne dust (Tanaka & Chiba, 2006), accounting for about 57% of 
annual emissions of global dust (Huneeus et al., 2011; Ryder et al., 2019). Dust aerosols could directly affect 
the Earth-atmosphere system radiative budget by absorbing and scattering solar radiation (J. Huang et al., 2009; 
Mamun et  al.,  2021; Ryder et  al.,  2019), as well as indirectly by modifying cloud macro- and micro-proper-
ties by acting as active cloud condensation nuclei (CCN) (J. Huang et al., 2006; Karydis et al., 2011; Koehler 
et  al.,  2009) and heterogeneous ice nucleation particles (Hoose & Möhler, 2012; Sassen et  al.,  2003; Twohy 
et al., 2017) that affect cloud formation, and even influence precipitation (J. Huang et al., 2014). As light-absorb-
ing particles (LAPs), Saharan dust affects radiative forcing and the water cycle by altering snow albedo (Dumont 
et al., 2020). The deposition of Saharan dust in the ocean also increases the carbon cycle of the ocean, as nutrients 
(Pabortsava et al., 2017). Through the Saharan heat low, dust also affects North African atmospheric dynamics 
and rainfall, hurricane development in North Atlantic (Colarco et al., 2014; Lavaysse et al., 2011; Pan et al., 2018; 
Ryder et al., 2019; Strong et al., 2018).

The uplift and long-range transport of Saharan dust is influenced by multi-scale weather systems. For exam-
ple, an intense cyclone triggered by a northern Africa high altitude trough (Alpert & Ziv, 1989; Bou Karam 
et  al.,  2010), surface cold fronts (Knippertz & Todd,  2012) in Synoptic Scale, Mesoscale "haboob" (Emmel 
et  al.,  2010; Knippertz et  al.,  2007) and downward momentum transport due to early morning low-level jets 
(LLJs) (Allen & Washington, 2014; Caton Harrison et al., 2019). Furthermore, microscale dust devils can all trig-
ger Saharan dust emissions (Ansmann et al., 2009; Koch & Renno, 2005). The very high atmospheric boundary 
layer of the Sahara Desert (usually reaching 5–6 km, considered the deepest on Earth, will contribute to lifting of 
Saharan dust to higher altitudes (Cuesta et al., 2020; Gamo, 1996). The presence of the African Eastern Jet (AEJ) 
at high altitude allows lifted dust transport westward to the Caribbean Sea (Thorncroft & Blackburn, 1999). 
Strong southwesterly airflow in front of an upper trough in North Africa allows for northward transport of lifting 
Saharan dust (Kutuzov et al., 2013). When strong zonal midtropospheric westerlies are present, lifted dust can be 
transported eastward through the westerlies (Hu, Huang, Zhao, Bi, et al., 2019; Hu et al., 2020). Merged with East 
Asian dust, Saharan dust can be further transported eastward to the Pacific Ocean after long-range transportion, 
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even reach and affect North America (McKendry et al., 2007). In transit across the Pacific Ocean, Saharan dust 
can interact with atmospheric rivers (Hu et al., 2022), causing precipitation and even flooding in western North 
America (Leung & Qian, 2009). Further, Creamean et al. (2013) observed that dust aerosols transported over 
long distances from the Sahara Desert are potential ice nucleation particles (INPs) in the western United States. 
Comparatively large amounts of Saharan dust are lifted by strong winds from the Sahara Desert and transported 
long distances along the tropical Atlantic Ocean to reach the Americas (Prospero, 1999; Prospero et al., 2014; 
Pu & Jin, 2021; Yu, Chin, Bian, et al., 2015; Yu, Chin, Yuan, et al., 2015; Yu et al., 2019). It is estimated that 
about 240 ± 80 Tg of dust which was transported from Sahara to the Atlantic Ocean using satellite observations 
annually (Kaufman et al., 2005). Additionally, Saharan dust transported to southwestern, western and central 
Europe has been observed, mainly above the boundary layer to 3–5 km, and even up to 7–8 km, above sea level 
(Ansmann et al., 2003). Consequently, Saharan dust was deposited in the European Alps, leading to an earlier 
snow melt date of 38 days (Di Mauro et al., 2019; Dumont et al., 2020). This transcontinental dust transport has 
already been investigated, and Uno et al. (2009) even verified that dust can circle the Earth.

Until now, most previous studies have proven that Saharan dust can be frequently transported westward through 
trade winds to the Atlantic Ocean and even to the Americas (Prospero et al., 1981) or northward to the Mediter-
ranean (Bonasoni et al., 2004; Ganor & Mamane, 1982) through a cyclone (Perry et al., 1997). Only a few studies 
have noted its transport path eastward to East Asia. Ground-based lidar observations combined with multi-model 
simulations were used to verify that a dust event in East Asia in March 2005 was of Saharan origin (Bong Park 
et  al.,  2005). Combined multiple conventional observations with global aerosol transport model simulations, 
Tanaka et al. (2005) found that a dust event occurred in Japan on March 25–27, 2003 originated from the Sahara 
Desert and the Middle East, and mixed with pollutants during transportation, suggesting that the Sahara Desert 
may be an important source of dust over East Asia. Schlesinger et al. (2006) proved that Saharan dust have a 
significant impact on the microbial population in the air in the eastern Mediterranean, based on sampling analysis 
during four dust events in 2004 and 2005 in Haifa, Israel. Using observations and simulations, Hsu et al. (2012) 
showed that Saharan dust can be transported even further eastward to the North Pacific Ocean, contributing to 
over 50% of the overall dust deposition there. Zhang et al. (2017) confirmed that clouds and precipitation in East 
Asian coastal areas are mainly affected by Gobi, Sahara and Thar dust in spring combing satellite observations, 
reanalysis data as well as model simulation. The impact of dust on large-scale cloud and precipitation in the 
high latitudes of East Asian coastal areas becomes more intense. Therefore, the eastward Saharan dust also may 
have a noticeable impact on the weather, climate, environment and human health in East Asia. However, current 
research on the eastward transportation of Saharan dust is focused on the West Asia or coastal areas of East Asia 
by analyzing dust cases. Long-term characteristics and impact of the eastward transportation of Saharan dust is 
still lacking. Although Lee et al. (2006), modeling dust in 2000, found that Saharan dust could reach Japan within 
9–10 days and generally had a higher impact on dust deposition there than East Asian dust. In terms of time 
scale, studies on the eastward transport of Saharan dust are still insufficient in a climatological view. Moreover, 
dust over East Asia is still widely believed to come from the Taklimakan Desert and Gobi Desert (Bong Park 
et al., 2005; Kurosaki & Mikami, 2007; Yumimoto et al., 2010).

Due to current lack of awareness of Sahara dust eastern transmission, we systematically described the charac-
teristics of Saharan dust transported to East Asia by studying dust cases there in the past 14 years (2007–2020), 
and estimated the amount of dust transported, which can help to better understand its long-range transport char-
acteristics and the sources of dust in East Asia, and further evaluate their impacts on climate and environment. 
In this study, CALIPSO lidar observations and WRF-Chem model simulations, combined with HYSPLIT and 
SPRINTARS models are applied to study the long-range transport of Saharan dust and evolution over East Asia 
from 2007 to 2020. Data and methods used are briefly described in Section 2, Section 3 includes the results and 
discussion, and conclusions are finally summarized in Section 4.

2. Data and Methods
2.1. CALIPSO Lidar Observation

The Cloud-Aerosol Lidar With Orthogonal Polarization (CALIOP) is a dual-wavelength (532 and 1,064 nm) 
polarized lidar on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satel-
lite (Winker et al., 2007; Yu et al., 2019). Its depolarization measurements can distinguish ice and water clouds, 
identifying non-spherical aerosol particles (J. Huang et al., 2007; Z. Huang et al., 2010; Winker et al., 2007). 
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The CALIOP can detect aerosol and cloud profiles, day and night, which are recorded with almost continuous 
high-resolution, since June 2006 (Ma et al., 2020; Winker et al., 2009, 2010). CALIOP's high resolution perpen-
dicular profiling capability and precise depolarization measurements make it an excellent platform for studying 
dust aerosols (Liu, Liu, et al., 2008; Liu, Omar, et al., 2008; Z. Huang et al., 2022). In this study, the CALIPSO 
Level 1 product 532 nm total backscatter attenuation coefficient (version: 4.10) and Level 2 product vertical 
feature mask (VFM, version: 4.20) are used for identifying and tracking the dust layer.

2.2. NCEP/NCAR Reanalysis Data

Began in 1991, NCEP/NCAR reanalysis project produced past global analyses of atmospheric fields to feed 
the research requirements of climate monitoring communities (Chen & Liu, 2016; Kalnay et al., 1996; Kistler 
et al., 2001). Data assimilation based on a frozen state-of-the-art analysis/forecasting system using historical data 
from 1948 to the present (Chen & Liu, 2016; Kalnay et al., 1996). The quality and utility of the reanalysis data are 
effectively ensured by quality control, high vertical resolution, and the output of numerous meteorological fields 
(Z. Huang et al., 2015; Kalnay et al., 1996). The spatial resolution of the data is 2.5° × 2.5°, corresponding to a 
horizontal grid of 144 × 73 (Dell’Aquila et al., 2007). This study used daily atmospheric level geopotential height 
field data at 500 hPa to analyze Saharan dust long-range meteorological transport mechanisms in East Asian dust 
cases from 2007 to 2020.

2.3. HYSPLIT Trajectory Model

The HYSPLIT model, developed by the Air Resources Laboratory (ARL) of the National Oceanic and Atmos-
pheric Administration (NOAA), is the most widely used model to analyze atmospheric transport and diffusion 
(Stein et al., 2015). The model can simulate transport and diffusion trajectories of various atmospheric pollutants. 
It is often used for backward trajectory analysis to ascertain the source of air masses (Fleming et al., 2012). The 
model calculation method combines Lagrangian and Eulerian methods. It is a relatively complete transfer, disper-
sion and deposition model with functions to handle the input domain of various meteorological elements as well 
as various physical procedures and different categories of pollutant emission sources. It is noted that the simu-
lation of HYSPLIT backward trajectory has uncertainty, especially in the case of long-time simulation. Overall, 
the average trajectory error was about 15%–20% of the travel distance after a few days (Stohl, 1998). Therefore, 
trajectory analysis is usually only used as auxiliary evidence for tracing the source.

In this study, dust layer time, position and height were obtained by using CALIPSO level 2 VFM data. As the 
key model input information component, backward 240 hr simulation is carried out to obtain the dust transport 
path. The three-dimensional meteorological input for HYSPLIT was taken from the Global Data Assimilation 
System (GDAS) by NCEP/NCAR Reanalysis Project (Kanamitsu, 1989). The GDAS is run 4 times a day, that is, 
at 00, 06, 12, and 18 UTC. NCEP post-processing of the GDAS converts the data from spectral coefficient form 
to 1° latitude-longitude (360 by 181) grids and from sigma levels to mandatory pressure levels. In this study, the 
number of backward trajectories we analyzed is nearly 130,000.

2.4. WRF-Chem Model With Tracer Source Tagging

WRF-Chem is a new generation regional air quality model developed by NOAA Forecasting System Laboratory 
(FSL) in the United States. It is composed of the Weather Research and Forecasting (WRF) model and a chemistry 
component (Chem). During intercontinental transportation, a tracer-tagging method is used to label and clearly 
track dust particles (Hu, Huang, Zhao, Ma, et al., 2019). The WRF-Chem model with quasi-global simulation and 
tracer source tagging capability was utilized in this study (Hu et al., 2016; Hu, Huang, Zhao, Ma, 2019; Zhao, 
Chen, et al., 2013). The model contains 360 × 145 grid cells (67.5°S–77.5°N, 180°W–180°E), with a horizontal 
resolution of 1° × 1°, which are divided into 35 vertical layers (up to 50 hPa) (Hu, Huang, Zhao, Ma, et al., 2019). 
The North African Sahara Desert (0–40°N and 20°W–35°E), East Asia (25–50°N and 75–150°E), and the Middle 
East (0–50°N and 35–75°E) are used as dust sources to mark and clearly track dust particles from 2010 to 2015 
(Hu, Huang, Zhao, Bi, et al., 2019; Hu, Huang, Zhao, Ma, et al., 2019; Mao et al., 2019). More detailed model 
setup information can be found in Zhao, Chen, et al. (2013) and Hu, Huang, Zhao, Bi, et al. (2019), and model 
simulation can be found in Hu et al. (2016) and Supporting Information S1. We used the model output results 
provided in Hu, Huang, Zhao, Ma, et al. (2019) to analyze specific characteristics of the eastward transport of 
Saharan dust and to calculate the amount of dust transported from the Sahara Desert to East Asia. Hu et al. (2020) 
showed that AOD simulated by WRF-Chem can be well represented in the spatial and seasonal variabilities 
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comparing with results from MODIS and MISRobservation. In addition, the CALIPSO retrievals are used to 
compare the vertical profile of aerosol extinction, and results from simulation and observation are also consistent.

2.5. Dust Cases Identification

Six aerosol types were described in the vertical feature mask (VFM, version: 4.20) of CALIPSO Level 2 product, 
including clear marine, dust, polluted continental, clean continental, polluted dust, and smoke. Polarization meas-
urement is very useful to distinguish dust from other aerosols (Z. Huang et al., 2018; Sugimoto & Huang, 2014), 
even dual-wavelength polarization can improve the identification of aerosol types (Dong et al., 2022; Z. Huang 
et al., 2020; Zhang et al., 2022). Among them, continuous dust and polluted dust were selected to identify the dust 
layer in region a (Figure 1). The selection reasons of specific region range can be seen in Section 3.1. If a dust 
layer appears in the region a, it is defined as a dust case. If dust layers in the study region lasted several consecu-
tive days, they will be merged as a dust case.

We further can obtain detailed information on dust layer time, location and height was used as the key input 
information of HYSPLIT model, aiming to improve the reliability of model simulation (Z. Huang et al., 2015; 
Stein et al., 2009). The HYSPLIT model was used to conduct 240-hr backward trajectory simulation to see the 
transport pathway of dust aerosol (Chen et al., 2018). If the backward trajectory was traced to the Sahara Desert 
and confirmed by SPRINTARS model simulation, the dust case can be recognized as Saharan dust case. Finally, 
all Saharan dust cases were confirmed using CALIPSO lidar measurements from 2007 to 2020.

3. Results and Discussion
3.1. Saharan Dust Cases in East Asia

Generally, Saharan dust particles can be transported to East Asia via the westerlies (Hsu et  al.,  2012; Lee 
et al., 2006; Tanaka et al., 2005). Previous studies on long-range Saharan dust transport have mainly focused 

Figure 1. Distribution of averaged MODIS AOD at 550 nm over East Asia from 2020 to 2021. Region a–f (region a: 4°–45°N, 105°−113°E; region b: 40°−42°N, 
90°−115°E; region c: 35°–43°N, 110°−120°E; region d: 26°−34°N, 110°−120°E; region e: 17°−25°N, 110°−120°E; region f: 26°−34°N, 142°−152°E) shows specific 
regions for detailed study.
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on individual cases, and so a climatological view of long-range transport is needed. To represent aerosol spatial 
characteristics, Figure 1 shows the distribution of averaged 550 nm AOD over East Asia observed by MODIS 
(https://giovanni.gsfc.nasa.gov/giovanni/). AOD values greatly vary spatially across China (Lee et al., 2007; Xin 
et al., 2007), although clearly, they are higher in coastal areas with a peak from 0.6 to 0.7, which is attributed to 
local pollution (Kim et al., 2007). Over the Taklimakan Desert, AOD reaches 0.5–0.6, which is mainly due to 
large amounts of dust (Sun et al., 2012).

In addition to anthropogenic emissions, high elevation is an important factor affecting dust transport. The Tibetan 
Plateau (TP) has an average altitude of 4,000 m, and can affect atmospheric circulation (Ding, 1992), even block-
ing dust transportation. To eliminate the influence of regional pollution and the TP topography on dust transport, 
we selected a long and narrow region to represent East Asia (region a in Figure 1). Here, we counted all dust 
cases over the past 14 years (2007–2020), and described long-range transport characteristics of Saharan dust to 
East Asia. According to the obtained dust transport path, we selected region b (Figure 1) to further study the 
distribution characteristics of eastward transported Saharan dust. Considering the dense population and frequent 
human activities in the eastern coastal area, the impact of dust may be more significant. Additionally, dust can 
also be deposited in the ocean as nutrients (Mills et al., 2004), which may also have important effects on the 
ocean. Therefore, we selected four small regions (c–f in Figure 1) and defined them as North China, Central 
China, South China and Western Pacific, respectively, to further analyze the vertical distribution of Saharan dust 
over East Asia.

Two hundred and thirty-eight (about 24.21%) of the 983 dust cases in region came from the Sahara Desert over 
the 14 years (2007–2020). There were more than 12 cases in 2020, accounting for 15.79%, and at most 24 in 2013, 
accounting for 35.29% (Figure 2a). Dust from the Sahara Desert accounts for almost a quarter of all dust cases in 
East Asia, showing that even deserts in distant regions cannot be ignored.

Dust cases from the Sahara Desert increased from January to April, from 1 to 3 on average (Figure 2b). From 
the beginning of May until September, the number of dust occurrences decreased, even dropping to none. This 
may be related to the Inter-tropical Convergence Zone (ITCZ) seasonal movement as one hemisphere warms 
relative to the other (Schneider et al., 2014), which will affect Saharan dust emission and transportation (Doherty 
et  al., 2014). From a seasonal change perspective, four colors were used to represent the four seasons in the 
northern hemisphere (Figure 2b). In spring (green box), the highest number of cases of Saharan dust transported 
eastward were in April, which is well in agreement with previous global model simulations of Saharan dust by 
Lee et al. (2006). In spring (green box) there were on average about 3 Saharan dust cases in 14 years, followed 
by winter (blue box), with an average of about 2. The number in June was only 0–2, there was only one in July 

Figure 2. (a) All dust cases (red column) during 2007–2020 in region a (Figure 1), and dust cases that originated from the Sahara Desert (blue column) (b) Monthly 
averaged numbers of Sahara dust cases in East Asia. The line in the box indicates the median of all data arranged from smallest to largest, the upper and lower 
boundaries of the box indicate the first and third quartiles, respectively, and the lines at the top and bottom of the box indicate the upper and lower limits of the anomaly 
range, beyond which the data are considered outliers. The small dots in the figure indicate the number of specific cases in 14 years.

https://giovanni.gsfc.nasa.gov/giovanni/
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(2011), and none in August over all 14 years. There was also one occurrence in September for 3 years, therefore, 
box plots were not drawn for any of the months of July to September due to so few Saharan dust cases. Such low 
dust case numbers in summer may be attributed to the northward shift of ITCZ (d’Almeida, 1986; Liu, Wang, 
et al., 2008) and the existence of easterly waves (Chen et al., 2018; Cuesta et al., 2020; Knippertz & Todd, 2012) 
that lead to the Sahara Desert area being mainly controlled by the Northeast air flow, whereby most of the dust 
moves westward to the Atlantic and America. Additionally, westerly belt weakening (Kuang & Zhang, 2005) 
and increased precipitation caused by the Asian summer monsoon (Ha et al., 2020) may weaken the eastward 
transport of dust during summer.

3.2. Long-Range Transport Path of Sahara Dust to East Asia

Saharan dust transport trajectories for all dust cases in 14  years were obtained by HYSPLIT model simula-
tions. In the range 0°–60°N, 30°W–150°E, the probability density function (PDF) calculated as the ratio of the 
number of trajectories to the total trajectories appearing in each longitude and latitude grid (1° × 1°) (Z. Huang 
et al., 2015). The general path of Saharan dust transported eastward each year (PDF high value area) coincides 
with the 500 hPa geopotential height field (contours) distribution, and was determined from calculating PDFs 
annually (Figure 3). Because of the many and complex causes of Saharan dust uplift, we focus on how the uplifted 
Saharan dust is transported long distances to the east. According to Lee et al. (2006), using the global model and 
Chen et al. (2018) using a variety of aerosol measurement and reanalysis methods, lifted Saharan dust can reach 
an altitude of 650 hPa or 5 km above sea level, and be transported over long distance by high-altitude winds. 
This is also supported by the vertical distribution characteristics of North African dust observed by Liu, Wang, 
et al. (2008) using CALIPSO. Considering that the lifted dust can be transported over long distances through the 
westerly wind belt at high altitude (J. Huang et al., 2008; Uno et al., 2011), we chose only the 500 hPa geopoten-
tial height field to ascertain the general seasonal transport route of Saharan dust in relation to circulation. Since 
the front of the high-altitude trough generally corresponds to updraft, Saharan dust is generally lifted in front 
of  the high altitude trough and transported eastward along the 500 hPa high altitude flow field (westerly wind 
belt) (Figure 3). Moreover, as stated by Lau and Kim (2006) and Hu, Huang, Zhao, Bi, et al. (2019), easterly 
transported Saharan dust is divide into north and south branches in the western part of the TP during transport, 
and reaches East Asia mainly through the northern branch. Dust in the southern branch, is mainly transported to 
the vicinity of the Himalayas. From the perspective of seasonal variation, the eastward transport path of Saharan 
dust in summer is more northerly than other seasonal paths. The reason may be that there is a high-pressure center 

Figure 3. Long-range Saharan dust transport path derived from HYSPLIT backward trajectories analysis. The contour color represents the PDF distribution of 240-hr 
HYSPLIT backward trajectories for Saharan dust cases over East Asia, and the contour lines represent averaged geopotential height field at 500 hPa during dust cases 
from NCEP/NCAR reanalysis data.
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in the south of Sahara Desert (Chen, 2005), which makes the high-altitude trough in the northwest of Sahara 
move northward, and the overall westerly belt moves northward. Our results show that Saharan dust can be trans-
ported directly from northern Africa to East Asia through the Mediterranean Sea, Caspian Sea and Central Asia 
in the whole year. Because the wind field is taken into account in the calculation of the trajectory, the randomness 
of turbulence leads to the inaccuracy of the calculation results (Stohl, 1998). Moreover, the origin of air parcels 
is not the same as the origin of particles, since a larger portion of particles are removed by wet or dry deposition 
during transportation (Yu et al., 2020). Therefore, this method of tracing the source by using the trajectory is 
usually verified in combination with different observations (such as satellite observations). For example, Uno 
et  al.  (2009) found that dust can travel around the world more than one full circuit around 13 days combing 
CALIPSO observation and HYSPLIT model simulation. So, we also further confirm transportation of dust using 
CALIPSO observation (Figures S1–S3 in Supporting Information S1, we take a dust case as an example).

To eliminate interference from other dust sources, the WRF-Chem model with tracer marker method was used 
for simulation and verification. Firstly, we verify the simulation results of the model for Saharan dust and further 
discuss seasonal differences in transport in the horizontal direction. We calculated the sum of the Saharan dust 
mass loading for all months within each season to more clearly reflect seasonal variation in the direction and 
amount of Saharan dust moving eastward. Since we only wanted to use the wind field (500 hPa) to determine 
Saharan dust transport, it was averaged over all months in a season and superimposed in Figure 4. High mass 
loading appeared in the Sahara Desert and there was almost no change in magnitude between seasons. Seasonal 
concentrations in East Asia were similar to in Figure 2b, with the highest in spring (MAM), between 50 and 
100 mg/m 2, and least in summer (JJA), between 15 and 20 mg/m 2. Seasonal variation in Saharan dust eastern 
transportation was significant. During transportation of Saharan dust to East Asia, it meets the Tibetan Plateau 
and is divided into north and south branches. Except for in spring, the amount of dust transported through the 
north branch to East Asia is greater than through the south branch, due to the high topography of the Tibetan 
Plateau blocking and dust also being transported along the westerly wind belt. The south branch is concentrated in 
the Himalayas. This is consistent with the long-range transport trajectory of Saharan dust, as shown in Figure 3. 
In spring, westerly winds are strong, but they change significantly in summer, suggesting that dust transport is 
strongly influenced by changes in westerly wind belt intensity. Moreover, Saharan dust continues to be trans-
ported eastward to the ocean. In the spring maximum, 30–50 mg/m 2 are transported to the western Pacific, and 
in the summer minimum, only 10–15 mg/m 2 are transported. In the process of long-range eastern transportation, 
dust mass loading decreases, which is caused by continuous deposition during transportation. Overall, therefore, 
the accuracy of the model for Sahara dust simulation was demonstrated.

Figure 4. Spatial distributions of Saharan dust mass loading (mg/m 2) and wind field (m/s) at 500 hPa for four seasons during the period of 2010–2015, derived from 
WRF-Chem simulations.
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In order to more accurately quantify the amount of dust transported from 
the Sahara to East Asia, we calculated the seasonal dust transport fluxes in 
four directions (east, west, south and north) in East Asia. The flux calcula-
tion formula, after Yu et al. (2008) and Hu, Huang, Zhao, Ma, et al. (2019), 
approximates the total amount of dust in the atmosphere transported from 
the Sahara to East Asia (Figure 5). Dust flux was greatest in spring, reaching 
31.19 Tg in 2013, and lowest in 2012 at 7.86 Tg. The lowest dust flux mainly 
occurred in summer, with the highest of 3.22 Tg in 2015, and the lowest in 
2012 at 2.02 Tg. Annual average dust transported from the Sahara Desert to 
East Asia was 33.05 Tg/yr, of which the minimum was 20.88 Tg in 2012, and 
the maximum was 44.94 Tg in 2013. In agreement with previous results, total 
dust transported from the Sahara was highest in spring with 18.02 Tg/yr and 
lowest in summer with 2.6 Tg/yr.

The model simulation results were further used to examine the horizontal 
distribution characteristics of Saharan dust eastward transport at different 
altitudes. Figure  6 shows the Saharan dust mass loading summed over all 
years, as in Figure 4. At 0–3 km above sea level, the model simulation results 
were blank because of high topography on the TP. The Sahara Desert had 

high values in all four seasons and the highest values in the Western Sahara region, reaching >1,000 mg/m 2. 
Other regions were also in the range of 500–1,000 mg/m 2, indicating that Saharan dust is active all year round 
(Knippertz & Todd, 2012). Furthermore, a large amount of Saharan dust (about 100–500 mg/m 2) is transported 
west over the four seasons. This is in agreement with previous understanding of the Saharan dust transport path-
way (Liu, Wang, et al., 2008; Reid et al., 2002). The eastward transport of Saharan dust at 0–3 km is not very 
significant and is only 1–5 mg/m 2 in both summer and autumn. More Saharan dust in East Asia occurs near the 
Himalayas in the southern, rather than the northern part of the TP. In spring, Saharan dust over northern branch 
was 10–15 mg/m 2, while in the southern branch of the TP it was nearly twice as much, between 20 and 30 mg/m 2. 
Additionally, Saharan dust can still reach the western Pacific Ocean, and up to 10–15 mg/m 2 in spring.

At 3–5 km above sea level, the overall Saharan dust mass loading decreases, but it is still very active in spring 
and summer, with dust ranging from 100 to 500 mg/m 2 being lifted to very high altitude. Liu, Wang, et al. (2008) 
also found that in spring and summer the average height of the dust layer is about 4 km, further supporting our 
results. The amount transported eastward to the TP is 10–15 mg/m 2 in spring, 5–10 mg/m 2 in winter. Some Saha-
ran dust enters the eastern TP, with 10–15 mg/m 2 in spring in the Qaidam Basin, about three times greater than 
the 1–5 mg/m 2 in all other seasons. When long-range transported Saharan dust enters the plateau, it affects the 
plateau climate and further influences downstream circulation and precipitation (Han et al., 2009). Dust from the 
Sahara will be further transported eastward to the western Pacific Ocean in amounts similar to those at 0–3 km.

At 5–7 km above sea level, 30–50 mg/m 2 of dust is present above the Sahara Desert in spring (Figure 7). Saharan 
dust is greatest in summer, at 50–100 mg/m 2, indicating that it is lifted higher in the summer, making long-range 
transportation possible (Uno et al., 2009). Meanwhile, Saharan dust can be seen over the entire TP, at 1–5 mg/m 2. 
At 7–12 km, although the east-borne Saharan dust is less than other altitudes, in East Asia in spring it reaches 
5–10 mg/m 2. Dust at this altitude can act as an ice nucleus (IN), transforming supercooled water clouds into ice 
clouds and enhancing DCCs convective precipitation (Yin & Chen, 2007; Yuan et al., 2021). In general, the mass 
loading of Saharan dust is further reduced at elevations above 5 km, but it is mainly transported eastward and 
is most pronounced in spring. The dust transport path is also mainly alongside the northern branch path of the 
TP. In spring, at 5–7 and 7–12 km, the dust is mainly east-borne, while in summer, it is mainly west-borne. As 
mentioned, the Saharan dust can continue eastward to the western Pacific Ocean.

3.3. Vertical Distribution of Saharan Dust in East Asia

The eastern transmission of Saharan dust is mainly around 5 km above sea level (Figures 6 and 7), but we further 
analyzed its vertical distribution along the dust transport path. The eastward transportation of Saharan dust is 
mainly along the northern branch path to the north of the Tibetan Plateau (Figures 3, 4, 6 and 7). According 
to this general transportation path, we selected region b in Figure 1 to further analyze the vertical distribution 
characteristics of Saharan dust during transport along meridional and zonal directions. In order to further study 
the vertical distribution of Saharan dust in the South and North of East Asia, we extend the region b (40°–42°N, 

Figure 5. The amount (Tg) of Saharan dust in the atmosphere calculated by 
WRF-Chem simulation during 2010–2015.



Journal of Geophysical Research: Atmospheres

LIU ET AL.

10.1029/2022JD036974

9 of 21

90°−115°E) in Figure 1 in the meridional direction, that is, expand the region to 20°–50°N, 90°−115°E. To more 
clearly compare different Saharan dust concentrations over East Asia in different seasons, the model simulation 
results in Figure 8 were log-transformed. Saharan dust is transported in horizontal bands in four seasons. Similar 
to the results of Lee et al. (2006), the highest Saharan dust concentration was near 500 hPa (5.5 km above sea 
level), decreasing upward and downward, and it was the highest in spring (Figures 2b and 4). The whole Saharan 
dust covers a wide range over East Asia in spring, from 30 to 50°N, and from the ground to high altitude. Surface 
Saharan dust concentration around 40°N is 0.4 μg/m 3, while at 30°N, it is >0.1 μg/m 3. Above 700 hPa (3 km 
above sea level), it ranges from 20° to 50°N, and can reach 0.8 μg/m 3 at 40°N. In winter and spring, Saharan dust 
is not only concentrated in northern China, but also present at high altitudes in southern China (south of 30°N). 
This is consistent with the results in Figure 7. Similarly, in winter, Saharan dust of 0.1 μg/m 3 can still be seen 

Figure 6. Spatial distributions of Saharan dust mass loading (mg/m 2) and average wind field (m/s) for four seasons at low- (0–3 km) and mid-altitude (3–5 km) in the 
troposphere.
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at 700–500 hPa south of 30°N. Thus, Saharan dust has a wide impact in East Asia. In summer, the Saharan dust 
concentration position moves northward and is concentrated between 40 and 50°N, which is coincide with the 
higher concentration of Saharan dust at 5–7 km in summer rather than spring in Figure 7, where it is lifted to 
higher altitudes, as it travels eastward to East Asia.

A similar altitude and seasonal distribution can be seen in Figure 9, and so Saharan dust concentrations we like-
wise log-transformed. Saharan dust is transported to East Asia in the form of belt, and concentrated near 500 hPa, 
decreasing upward and downward. In spring Saharan dust concentration is the highest, more than 0.9 μg/m 3, and 
in summer it is the lowest, at 0.2 μg/m 3. Additionally, concentration of Saharan dust decreases along its transport 

Figure 7. Spatial distributions of Saharan dust mass loading (mg/m 2) and average wind field (m/s) for four seasons for high altitudes (5–7 km and 7–12 km).
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path. The highest Saharan dust concentration area also decreases in height, and a large amount of dust can be 
found on the windward slope of the mountains. In spring, 0.8–0.9 μg/m 3 of dust appeared on the top of the wind-
ward slope, and in summer it was the least, at nearly 0.1 μg/m 3. If the Saharan dust settles on the windward slope 
of the mountains, it can affect snow cover, hydrological changes and ecology (Sarangi et al., 2020). Saharan dust 
concentration in the upper air also changes due to the influence of terrain ranging from 95 to 100°E. Additionally, 
in summer, the extension of Saharan dust in the vertical range east of 105°E is significantly less than in other 
seasons, and the concentration height is also above 500 hPa, which is consistent with greater height of Saharan 
dust in summer (Figures 7 and 8).

Saharan dust is mainly concentrated in the upper air of East Asia, and its effects are widespread, and will appear in 
the upper air of southern China. Therefore, we selected four different regions (regions c–f in Figure 1) to observe 

Figure 8. Vertical cross-sections of meridional dust mass concentration (μg/m 3) originating from the Sahara Desert in different seasons from the WRF-Chem model 
simulation during 2010–2015 (in region 20°–50°N, 90° − 115°E).
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Saharan dust vertical distribution. Additionally, since the WRF-Chem model can simulate the dust distribution 
of different dust sources (Sahara, Central Asia and East Asia), we can examine differences between Saharan dust 
and other dust sources. Figure 10 shows the dust concentration profiles of different dust sources in regions c 
and d in different seasons obtained from the WRF-Chem model. To reduce the magnitude of difference between 
different dust sources, we log-transformed all concentrations. In North China and Central China, long-range 
transport of Saharan dust caused similarly vertical distributions, both initially increasing and then decreasing with 
increasing height, with high concentration at 500 hPa. East Asian dust was mainly concentrated at low altitudes, 
and its dust concentration decreased with increasing height. Below 500 hPa, the East Asia dust concentration was 
almost twice that of Sahara and Central Asia dust. Therefore, East Asia dust will affect human activities more 
(Yin et al., 2021). However, above 500 hPa in spring, the three dust concentrations were nearly equivalent. At the 

Figure 9. Vertical cross-sections of zonal dust mass concentration (μg/m 3) originating from the Sahara Desert in different seasons from the WRF-Chem model 
simulation during 2010–2015 (in region 40°–42°N, 90°−115°E).
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Figure 10. Vertical distribution of Sahara dust concentration from different dust sources in North and Central China in different seasons from 2010 to 2015 simulated 
by WRF-Chem.
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same time, above 400 hPa, except in summer, the Saharan dust concentration in other seasons was the greatest of 
all three kinds of dust. This pattern also showed from the proportion of Saharan dust in the three dust types (black 
dotted line). The proportion of Saharan dust increased from 850 hPa and remained almost unchanged above 
400 hPa. In autumn and winter, Saharan dust accounted for nearly 50% above 400 hPa, while it was 40% in spring 
and 20% in summer. The higher the altitude, the greater the proportion of Saharan dust, and so its role cannot be 
ignored, as it may further affect high-altitude cirrus clouds and thus precipitation (Creamean et al., 2013; Twohy 
et al., 2017). In Central China, dust concentration and magnitudes in different dust sources were similar to in 
North China, but in spring and summer, all dust concentrations above 500 hPa were lower, indicating less Saharan 
dust reaching the upper air in Central China. In summer, the proportion of Saharan dust initially increases with 
height, decreases after 500 hPa, and increases again after 400 hPa. This is not only related to the sharp reduction 
of Saharan dust itself at high altitude, but also related to the sharp reduction of East Asian dust above 400 hPa.

Figure 11 shows the distribution of dust concentrations in regions e and f (Figure 1) obtained from the WRF-Chem 
model for different seasons and different dust source areas. In South China, the dust concentration increases 
initially, and then decreases with height, but the maximum concentration decreases, and is lower than 550 hPa. 
The overall dust concentration is lower than in North and Central China, and in winter and spring, there is little 
difference in dust concentration between different dust sources below 850  hPa. But above 400  hPa, Saharan 
dust still accounts for 50%–60% as in North and Central China, which shows that Saharan dust will also have 
an impact on South China. In summer, the proportion of Saharan dust concentration above 400 hPa decreases 
to about 16%. In contrast to North and Central China, the East Asia dust concentration is lower than for Central 
Asia at all heights, the minimum concentration is below 850 hPa, and there is no change with height, indicating 
that East Asia dust has a weak impact on South China. The ratio of dust initially increased, and then decreased 
from 550 hPa. In the Western Pacific, the overall change trend is similar to that in South China, but in spring, the 
proportion of Saharan dust above 400 hPa is between 40% and 45%, which is lower than in the first three regions. 
Concurrently, the maximum value for all dust types occurred at 700–550 hPa, which is lower than the first three 
areas. This is most likely due to inevitable dust settlement during transportation. The proportion of Saharan dust 
concentrated above 400 hPa increased significantly, and increased by 10%–20% in different seasons. Although 
Saharan dust concentration in the Western Pacific decreases and the main height decreases, its importance above 
400 hPa cannot be ignored.

As Saharan dust is mainly concentrated at high altitudes (above 5 km above sea level; see Figures 8–11), we 
focused on the dust concentrations and proportions of different dust sources >5 km above sea level in the four 
selected study areas. Overall dust concentrations are the least in South China and the most in North China 
(Figure 12), and in spring North China has the highest dust concentration of 88.33 μg/m 3. The dust in the upper 
air of South China is the least, and is highest in spring, where the dust above 5 km is 7.92 μg/m 3. Dust concentra-
tion in high air decreases from north to south in China (Figure 12). Although the latitude of the Western Pacific 
is the same as Central China, dust concentration in the upper air is lower because it is farther away from the dust 
source. East Asian dust activity is also most frequent in North China in spring (Tian et al., 2020), so the propor-
tion of East Asian dust is highest then, and in summer can reach 58.1%. But the proportion of Saharan dust is 
comparable to that of East Asian dust, for example, in spring in North China, East Asian dust accounts for 37.7% 
and Saharan dust accounts for 35.8%. Except for summer, all regions are dominated by East Asian dust, and all 
other seasons are dominated by Saharan dust. The highest proportion of Saharan dust is 48.6%, which occurs in 
spring in South China. Using a global dust transport model, Tanaka and Chiba (2006) simulated an atmospheric 
load of about 1.1 Tg in East Asia (Eastern and Western China). Moreover, in East Asia, Saharan dust accounts for 
20% to more than 30% of the annual dust load, and Arabian dust accounts for 10%. Therefore, the role of Saha-
ran dust in East Asia cannot be ignored. Its radiative and indirect effects will further affect clouds, atmospheric 
circulation and East Asian monsoon, affecting precipitation, and thus the water cycle system in East Asia and 
even the whole world.

4. Conclusions
To better understand long-range transport of Saharan dust, we investigate its transport path and dust aerosol 
populations in East Asia combined satellite observation, model simulations as well as reanalysis data. Firstly, we 
selected all dust cases in East Asia during 2007–2020 from CALIPSO lidar observations, and then validated by 
HYSPLIT trajectory and SPRINTARS models. Secondly, we examined Saharan dust long-range transport paths 
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Figure 11. Vertical distribution of Sahara dust concentration from different dust sources in South China and Western Pacific in different seasons from 2010 to 2015 
simulated by WRF-Chem.
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using models and NCEP/NCAR reanalysis data. Finally, we investigated 
Saharan dust distribution in East Asia based on WRF-Chem simulation.

We found that 24.3 ± 6.2% of dust cases in East Asia during 2007–2020 
originated from the Sahara Desert, at least 12 times in 2020, accounting for 
15.79%, and the most 24 times in 2013, accounting for 35.29%. Dust from 
the Sahara Desert accounted for almost a quarter of all dust cases in East 
Asia, demonstrating that even deserts in distant regions cannot be ignored. 
Seasonal variation in the eastern transportation of Saharan dust is signifi-
cant. In spring, the most cases of Saharan dust transported eastward were 
concentrated in April, with an average of about 3 times in 14 years, followed 
by winter, with an average of about twice in 14 years. It is similar with results 
by Lee et al. (2010), suggesting that Hong Kong was most affected by dust 
from East Asia and other distant desert in March, but not in summer. Saharan 
dust could be transported eastward in all seasons, and mainly located in the 
high altitude westerly airflows. Easterly-transported Saharan dust divides 
into north and south branches during the transport process, and reaches 
East Asia mainly through the northern branch. However, from a year-by-
year perspective, the Saharan dust transport path does not show a trend of 
movement to the south or north, this may only reflect the limited time frame 
of our study.

The amount of Saharan dust in East Asia estimated by our WRF-Chem model was 33.05 ± 9.78 Tg/yr, and was 
highest in spring and lowest in summer. Eastern transmission of Saharan dust is mainly around 5 km above sea 
level. In spring, the whole Saharan dust covers a wide range over East Asia. In both winter and spring, Saharan 
dust is not only concentrated in the northern part of China, but also present at high altitudes in southern China 
(south of 30°N). Moreover, the higher the altitude, the greater the proportion of Saharan dust among all dust 
origins. Its role cannot be ignored, which may further affect high-altitude cirrus clouds and thus precipitation. 
In spring, Saharan dust contributed 35.8% of dust loading to the upper troposphere in North China, which is 
almost the amount of dust aerosols lifted up from East Asian dust sources. This brings to light the important role 
of Saharan dust in East Asia. Quantitative analysis of the amount of long-range transported Saharan dust is very 
useful to better evaluate the impact of dust on climate and environment over east Asia. However, the WRF-Chem 
model simulation was not long enough for us to investigate variation of the dust transported from Sahara Desert 
to East Asia on longer time scales. Furthermore, the effects of Saharan dust as ice nuclei on precipitation in East 
Asia and as absorbing particles deposited on snow and glaciers in East Asia could not be addressed. These are 
important issues in East Asia and will be investigated in future.

Data Availability Statement
The CALIPSO lidar observation data are freely available from Atmospheric Science Data Center (NSDC) 
website (https://subset.larc.nasa.gov/calipso/). You need to register before downloading data. The NCEP/NCAR 
reanalysis data (Kalnay et al., 1996) was obtained from NOAA Physical Sciences Laboratory website (https://psl.
noaa.gov/thredds/catalog/Datasets/ncep.reanalysis/catalog.html). The installation of HYSPLIT trajectory model 
PC version is downloaded from NOAA Air Resources Laboratory website (https://www.ready.noaa.gov/docu-
ments/Tutorial/html/index.html). HYSPLIT model (Rolph et al., 2017; Stein et al., 2015) also can run online from 
NOAA Air Resources Laboratory website (https://www.ready.noaa.gov/HYSPLIT_traj.php). The updated version 
of WRF-Chem model is available by downloading from https://doi.org/10.5281/zenodo.4663508 (last access: 17 
March 2022) (Zhao & Zhang, 2021). The MODIS AOD products were obtained from NASA's Giovanni project 
website (https://giovanni.gsfc.nasa.gov/giovanni/). In this web page, you can automatically generate figures by 
selecting datasets.

Figure 12. Mass concentration of dust aerosols originated from the Sahara 
Desert, Middle Asia and East Asia at high-altitude (5 km) obtained from the 
WRF-Chem simulation for four regions over East Asia during the period 
2010–2015.
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https://www.ready.noaa.gov/documents/Tutorial/html/index.html
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