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Abstract: Previous studies have shown that dust aerosols may accelerate the melting of snow and
glaciers over the Tibetan Plateau. To investigate the vertical structure of dust aerosols, we conducted
a ground-based observation by using multi-wavelength polarization lidar which is designed for
continuous network measurements. In this study, we used the lidar observation from September
to October 2020 at the Ruoqiang site (39.0◦N, 88.2◦E; 894 m ASL), located at the junction of the
Taklimakan Desert–Tibetan Plateau. Our results showed that dust aerosols can be lifted up to 5 km
from the ground, which is comparable with the elevation of the Tibetan Plateau in autumn with a
mass concentration of 400–900 µg m−3. Moreover, the particle depolarization ratio (PDR) of the lifted
dust aerosols at 532 nm and 355 nm are 0.34 ± 0.03 and 0.25 ± 0.04, respectively, indicating the high
degree of non-sphericity in shape. In addition, extinction-related Ångström exponents are very small
(0.11 ± 0.24), implying the large values in size. Based on ground-based lidar observation, this study
proved that coarse non-spherical Taklimakan dust with high concentration can be transported to the
Tibetan Plateau, suggesting its possible impacts on the regional climate and ecosystem.

Keywords: dust; lidar; polarization; Taklimakan Desert

1. Introduction

Dust is an important component of tropospheric aerosol [1,2], and it is estimated that
about 2000 tons of dust are injected into the atmosphere every year [3]. It participates in var-
ious cycles of the Earth’s system [4–6] and directly affects the Earth’s energy budget [7–11].
It can also become cloud condensation nuclei and modify the microphysical characteristics
of clouds, which can eventually influence the global climate [12–15]. Understanding the
vertical distribution of dust properties would assist in revealing the impact of dust on air
quality assessment, human health, and the climate [16–20].

The research conducted by Goudie et al. and Tanaka et al. demonstrated that the
dust emission from East Asia is second only to the Sahara Desert, which contributes the
most to the global dust budget [21,22]. The Taklimakan Desert (TD), located in Northwest
China and the northern edge of the Tibetan Plateau, is the main dust source in East
Asia [23–25]. Many studies have confirmed the transportation of dust from the TD over
a long distance through the westerlies, which affected East China and even the Pacific
and North America [26–30]. Yuan et al. [31] reported that due to the special terrain of
TD and the prevailing east wind at low altitude, the dust below 5 km near the ground
is not easy to be transported to the East in summer. Based on Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observations (CALIPSO), Huang et al. [32] found the radial
transmission of the dust aerosol from the TD in summer to the northern slope of the Tibetan
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Plateau which resulted in dust accumulation. Liu et al. [33] also indicated that TD dust is
the main source of dust aerosol in the Tibetan Plateau. Moreover, the absorptive aerosols
(e.g., dust and black carbon) transmitted to the glaciers and snow on the Tibetan Plateau
can absorb more solar radiation to influence the surface radiation flux and the South Asian
monsoon [34–37]. Wang et al. [38] also pointed out that the glacial retreat and snow melting
in the Tibetan Plateau are closely related to the transmission of dust particles.

Earlier studies on dust in the TD mainly relied on the data of meteorological stations
to analyze the frequency of dust occurrence [39,40]. The vertical distribution characteristics
of dust aerosols were often studied by means of satellite remote sensing, such as CALIPSO,
moderate-resolution imaging spectroradiometer (MODIS) and simulation results [41–43].
By analyzing the seasonal and vertical distributions of aerosols using satellite remote
sensing data, Pan et al. [44] found that dust is the main type in the TD, accounting for
88.38% of all aerosols. However, due to the limitation of satellite remote sensing, it is
difficult to study the diurnal variation of aerosol vertical characteristics. Besides, model
simulation results still exhibit large uncertainty, especially in East Asia [45]. Ground-based
lidar observation with high temporal and spatial resolutions is very useful to study the
vertical characteristics of aerosols [46–51]. Zhou et al. [52] conducted a lidar observation
in Northwest China, indicating that the high-intensity dust layer mainly occurs in the
planetary boundary layer (PBL), and its occurrence frequency is above 88%. However, few
studies have focused on dust aerosol in the TD using ground-based lidar, and most of them
were concentrated in the north of TD [53,54].

In this study, we firstly investigate the vertical distribution of dust optical properties
at the Ruoqiang site (88.2◦E, 39.0◦N) by using a ground-based polarization lidar in Autumn
(from September to October 2020). Section 2 briefly describes the study area and lidar
system used in this study. Two dust cases and the characteristics of dust optical properties
during the study period are presented in Sections 3 and 4. Our conclusions are then briefly
summarized in Section 5.

2. Study Areas and Lidar System
2.1. Study Areas

The ground-based lidar system used in this study is located at the Ruoqiang site
(39.0◦N, 88.2◦E; Altitude: 894 m), Xinjiang Province, China (see Figure 1). Ruoqiang lidar
site is the seventh of the “Belt and Road” lidar network conducted by Lanzhou University,
China. It is located in the east of the TD, and is very close to the snow cover and glaciers at
the northeastern part of the Tibetan Plateau. In addition, it belongs to the warm temperate
and continental desert arid climate, with much dust loading and little precipitation.
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2.2. Ground-Based Multi-Wavelength Mie Polarization Lidar System (MMPL)

The multi-wavelength Mie polarization lidar system developed by Lanzhou University
can collect the backscattering signals of 1064 nm, 532 nm and 355 nm simultaneously. The
schematic diagram of the lidar system used in this study is shown in Figure 2. The lidar
system employs a Nd: YAG laser which can emit lasers with fundamental frequency
(1064 nm), double frequency (532 nm) and triple frequency (355 nm). Then, lasers are
collimated and amplified by beam expanders. The telescope with a diameter of 400 mm is
used to receive the backscattering signals. The signals at 532 nm and 355 nm are divided into
parallel components and vertical components using polarizing beamsplitters respectively,
and consequently detected by photomultiplier tubes (PMT). The 1064 nm signal is detected
by an avalanche photo diode (APD). The temporal and spatial resolutions of the observed
data are 2 min and 3.75 m, respectively. The lidar system is installed in a container with the
temperature of around 23 ◦C. It is equipped with UPS that can supply power continuously
for more than 8 h.
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Figure 2. The schematic diagram of the developed ground-based multi-wavelength Mie polarization
lidar system (MMPL) used in this study.

We determined the dust extinction coefficient and backscattering coefficient by use
of the Fernald method [55,56]. In this study, the lidar ratio of dust aerosols is assumed to
be 50 sr [57]. Then, the backscattering coefficient and extinction coefficient of dust can be
retrieved from Equation (1),

β1(I) = −β2(I) +
X(I) exp[A(I, I + 1)]

X(I+1)
β1(I+1)+β2(I+1) + S1{X(I + 1) + X(I) exp[A(I, I + 1)]}∆Z

(1)

where A(I, I + 1) = (S1 − S2)[β2(I) + β2(I + 1)]∆Z, β1 and β2 are the backscattering co-
efficient of aerosols and air molecules, respectively; while S1 and S2 (=8π/3) are the lidar
ratios of aerosols and air molecules, respectively. X is the normalized signal after backgroud
subtraption, range correction as well as overlap correction, and ∆Z is the spatial resolution.
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The lidar used in this study can perform polarization measurement and distinguish
spherical or non-spherical aerosols, especially in dust detection [58,59]. The particle depo-
larization ratio (PDR) is given by Equation (2) [57],

δp =
(1 + δm)δvR− (1 + δv)δm

(1 + δm)R− (1 + δv)
(2)

where δm is the molecular depolarization ratio (the typical value is 0.00376 [60]), δv is
the volume depolarization ratio, and R is the ratio of total backscattering to air molecule
backscattering. The volume depolarization ratio can be calculated by multiplying the
calibration factor with the ratio of vertical channel to parallel channel. The calibration factor
k can be determined from the experiment [61]. In this study, the atmospheric molecular
method is used. PDR is an important parameter for identifying dust aerosols. For spherical
targets, the depolarization ratio is equal to 0. However, for non-spherical particles (e.g., dust
aerosols), the depolarization ratio is greater than 0. For fine aerosols, the PDR is often less
than 0.05 [62,63].

Ångström exponent is an important parameter to characterize the optical character-
istics of atmospheric aerosols [64]. It reflects the dependence of aerosol extinction on the
wavelength of incident light. It is related to the size of aerosols, and small values mean
large particle sizes. The extinction-related Ångström exponent (EAE) is expressed by,

Aα
λ1/λ2

=
ln
(
αλ1 /αλ2

)
ln(λ2/λ1)

(3)

In this study, λ1 and λ2 represent the wavelengths of 355 nm and 532 nm, respectively.

2.3. CALIPSO Lidar Data

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is
a polar orbiting satellite of the NASA A-train satellite group. It is equipped with the Cloud
Aerosol Lidar With Orthogonal Polarization (CALIOP), which can provide vertical profiles
of clouds and aerosols globally. Polarization measurement is conducted at the wavelength
of 532 nm. The vertical resolution is 30 m below 8.2 km [65]. It is an effective tool to
study dust aerosols. The level-1B data from CALIPSO products, including 532 nm total
attenuated backscattering coefficient, depolarization ratio (532 nm) and attenuated color
ratio, are used to confirm the vertical structure of dust aerosols observed by ground-based
lidar in this study.

3. Results
3.1. Dust Case 1: 13 September 2020

A dust event which occurred in Northwest China from 13 to 14 September 2020 was
also detected by the CALIPSO spaceborne lidar, as shown in Figure 3. The total attenuated
backscattering coefficient at 532 nm was quite large. The depolarization ratio (532 nm) and
color ratio were also high in value, indicating that it was mainly composed of particles with
high non-sphericity and large particle size. It is suggested that there was an obvious thick
dust layer. In addition, CALIPSO lidar found the main distribution of dust in the TD from
the ground to about 2 km height with a wide horizontal scale. Moreover, dust aerosols also
appeared over the Tibetan Plateau at an altitude of about 4 km near the TD.
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Figure 3. The vertical structure of clouds and aerosols detected by CALIPSO in Northwest China
on 14 September 2020, (a) total attenuated backscattering coefficient at 532 nm; (b) PDR at 532 nm;
(c) attenuation color ratio (1064 nm/532 nm). The red line represents the closest location of ground-
based lidar site.

Figure 4 shows the vertical structure of clouds and dust aerosols detected by the
ground-based polarization lidar at the Ruoqiang site (39.0◦N, 88.2◦E, 894 m) from 13 to
14 September 2020. The attenuated backscattering coefficient both at 1064 nm and 532 nm,
and the PDRs at 532 nm and 355 nm, are shown. It can be seen that there was an obvious
dust layer during the observed period, mainly distributed from the ground to 5 km height.
The attenuated backscattering coefficients of the dust layer at 1064 nm and 532 nm were
larger than 0.003 km−1sr−1. PDR at 532 nm (δp

532) was greater than 0.3, and that at 355 nm
(δp

355) was greater than 0.2, indicating highly non-spherical particles. It is similar to the
typical values of dust aerosols observed by lidar in Dushanbe [65]. Regarding the dust event
on 13 September, the dust layer was mainly distributed around 2–5.6 km height. In addition,
the dust distribution exhibited an obvious stratification phenomenon. For example, the
dust layer located at 2–5 km height from 8:00 to 16:00 was not distributed uniformly. On
14 September, the dust layer settled continuously with time, mainly distributed below
4 km. However, the layer was distributed at 5–6 km from 0:00 to 8:00, and then descended
down to 4 km with time.
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To specifically analyze the vertical structure of dust aerosols at the Ruoqiang site
during the dust event, vertical profiles of dust optical properties from 13 to 14 September
2020, as shown in Figure 5. The profiles of extinction coefficients and particle depolarization
ratios (PDR) both at 532 nm and 355 nm, extinction-related Ångström exponent (EAE) as
well as dust mass concentration are used to discuss in detail. The uncertainty of extinction
coefficient caused by the lidar ratio with error within 10% is about 8–17%, which is accept-
able. On 13 September, the extinction coefficient of aerosols was small at 1–2 km height
from the ground, but was large at 3 km height up to 0.27 km−1 at 532 nm. The variation
of vertical profiles on 14 September was slightly different. Dust extinction coefficients at
532 nm reach a peak of 0.24 km−1 around 4 km. Moreover, it increased slightly at about
5.5 km height, which was related to another dust layer at high altitude. The variation trend
of depolarization ratio profile (see Figure 5b) is consistent with the extinction coefficients
on 13 September. The situation on 14 September is slightly different. The maximum value
of PDR is distributed around 1 km, rather than around 4 km as with the extinction co-
efficient. We see that that PDR at 532 (355) nm was about 0.3 (0.2) for the dust layer. In
particular, the EAE was small, indicating that the size of such particles is coarse. Wang et al.
proposed a method for estimating the mass concentration of dust from lidar measurements
at Dunhuang which is closed to the Ruoqiang site. So, we assume the optical properties
of dust at Ruoqiang are similar to those at Dunhuang. Consequently, for calculating mass
concentration of dust from extinction coefficients at 532 nm, we suppose the conversion
coefficient is 0.41 [66]. In Figure 5d, we can see that the dust mass concentration was very
high and reached up to 650 µg m−3 from 13 to 14 September.



Remote Sens. 2022, 14, 558 7 of 16

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 5. Vertical profiles of dust optical properties at Ruoqiang from 13 to 14 September 2020. 
Green and magenta lines represent profiles at 532 nm and 355 nm, respectively. The solid line is the 
averaged values from 11:00 to 12:00 (LST) on 13 September, and the dotted line is averaged values 
from 3:00 to 5:00 (LST) on 14 September. (a) extinction coefficients at 532 nm and 355 nm; (b) PDR 
at 532 nm and 355 nm; (c) extinction-related Ångström exponent (355 nm/532 nm); (d) DMC presents 
dust mass concentration calculated using a method proposed by Wang et al. (2021). 

3.2. Dust Case 2: 2 October 2020 
On 2 October 2020, CALIPSO lidar captured another dust event near Ruoqiang site. 

Figure 6 shows that the dust concentration was high, and the depolarization ratio and 
color ratio also showed large values, indicating that the dust particles had high non-sphe-
ricity and large particle size. Compared with the case on 14 September, the height of the 
dust layer for this case was higher. In particular, some dust aerosols were very close to 
the Tibetan Plateau at an altitude of 4–5 km. According to ground-based observation as 
shown in Figure 7, the dust layer was mainly distributed from 2 km to 4 km height, and 
the dust concentration near the ground was low. It can be seen that the dust intensity was 
large, but the dust was not evenly distributed in the vertical direction. For example, there 
was a thin layer of dust at about 4 km height from 2:00 to 6:00 (LST), and there was a thick 
layer of dust at 2–3.8 km height with high concentration. PDR at 532 (355) nm is larger 
than 0.3 (0.2), implying that the particles were highly non-spherical. 

Figure 5. Vertical profiles of dust optical properties at Ruoqiang from 13 to 14 September 2020. Green
and magenta lines represent profiles at 532 nm and 355 nm, respectively. The solid line is the averaged
values from 11:00 to 12:00 (LST) on 13 September, and the dotted line is averaged values from 3:00 to
5:00 (LST) on 14 September. (a) extinction coefficients at 532 nm and 355 nm; (b) PDR at 532 nm and
355 nm; (c) extinction-related Ångström exponent (355 nm/532 nm); (d) DMC presents dust mass
concentration calculated using a method proposed by Wang et al. (2021).

3.2. Dust Case 2: 2 October 2020

On 2 October 2020, CALIPSO lidar captured another dust event near Ruoqiang site.
Figure 6 shows that the dust concentration was high, and the depolarization ratio and color
ratio also showed large values, indicating that the dust particles had high non-sphericity
and large particle size. Compared with the case on 14 September, the height of the dust
layer for this case was higher. In particular, some dust aerosols were very close to the
Tibetan Plateau at an altitude of 4–5 km. According to ground-based observation as shown
in Figure 7, the dust layer was mainly distributed from 2 km to 4 km height, and the dust
concentration near the ground was low. It can be seen that the dust intensity was large,
but the dust was not evenly distributed in the vertical direction. For example, there was a
thin layer of dust at about 4 km height from 2:00 to 6:00 (LST), and there was a thick layer
of dust at 2–3.8 km height with high concentration. PDR at 532 (355) nm is larger than
0.3 (0.2), implying that the particles were highly non-spherical.

The vertical distribution of dust optical properties (Figure 8b) shows that the dust layer
was mainly concentrated at 2–4 km height from the ground, and extinction coefficients at
two wavelengths were greater than 0.35 km−1. The extinction coefficient increased slightly
between 4.2 km and 4.8 km height, mainly related to another thin dust layer. The variation
of δ

p
532 and δ

p
355 profiles were generally consistent with those of extinction coefficients. The

PDR at 355 nm of the dust layer appeared at 2–3 km height was larger than 0.25, and 0.3 for
PDR at 532 nm. In addition, the EAE of the dust layer was close to zero, indicating that the
particle size is very large in this layer. In particular, the mass concentration of dust was
also very high, reaching up to 900 µg m−3.



Remote Sens. 2022, 14, 558 8 of 16

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 6. Same as Figure 3 but for 2 October 2020. (a) total attenuated backscattering coefficient at 
532 nm; (b) PDR at 532 nm; (c) attenuation color ratio (1064 nm/532 nm). The red line represents the 
closest location of ground-based lidar site. 

 
Figure 7. Same as Figure 4 but for 2 October 2020. 

The vertical distribution of dust optical properties (Figure 8b) shows that the dust 
layer was mainly concentrated at 2–4 km height from the ground, and extinction coeffi-

Figure 6. Same as Figure 3 but for 2 October 2020. (a) total attenuated backscattering coefficient at
532 nm; (b) PDR at 532 nm; (c) attenuation color ratio (1064 nm/532 nm). The red line represents the
closest location of ground-based lidar site.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 6. Same as Figure 3 but for 2 October 2020. (a) total attenuated backscattering coefficient at 
532 nm; (b) PDR at 532 nm; (c) attenuation color ratio (1064 nm/532 nm). The red line represents the 
closest location of ground-based lidar site. 

 
Figure 7. Same as Figure 4 but for 2 October 2020. 

The vertical distribution of dust optical properties (Figure 8b) shows that the dust 
layer was mainly concentrated at 2–4 km height from the ground, and extinction coeffi-

Figure 7. Same as Figure 4 but for 2 October 2020.



Remote Sens. 2022, 14, 558 9 of 16

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 16 
 

 

cients at two wavelengths were greater than 0.35 km . The extinction coefficient in-
creased slightly between 4.2 km and 4.8 km height, mainly related to another thin dust 
layer. The variation of 훿  and 훿  profiles were generally consistent with those of ex-
tinction coefficients. The PDR at 355 nm of the dust layer appeared at 2–3 km height was 
larger than 0.25, and 0.3 for PDR at 532 nm. In addition, the EAE of the dust layer was 
close to zero, indicating that the particle size is very large in this layer. In particular, the 
mass concentration of dust was also very high, reaching up to 900 μg m . 

 
Figure 8. Vertical profiles of dust optical properties at Ruoqiang averaged from 2:00 to 5:00 on 2 
October 2020. Green and magenta lines represent profiles at 532 nm and 355 nm, respectively. (a) 
extinction coefficients at 532 nm and 355 nm; (b) PDR at 532 nm and 355 nm; (c) extinction-related 
Ångström exponent (355 nm/532 nm); (d) DMC presents dust mass concentration calculated using 
a method proposed by Wang et al. (2021). 

4. Discussion 
4.1. Characteristics of Dust Optical Properties 

To further understand the characteristics of dust properties, we investigated the re-
lationships among key optical properties of dust using two months’ observational data. 
The selection of dust data is based on the aerosol temporal and spatial distribution and 
PDR observed by lidar. Figure 9 presents the frequency histograms of 훿  (green) and 
훿  (magenta) of dust aerosols during the observed period. It can be seen that 훿  is 
mainly concentrated in 0.2–0.3, with an average value of 0.25 and a standard deviation of 
0.04. The peak of PDR is located in the range of 0.225–0.25. For the range less than 0.15 
and greater than 0.3, the relative frequency of PDR at 355 nm is very small. The frequency 
distribution characteristics of 훿  are similar to those of 훿 , but mainly concentrated 
in the range of 0.3–0.375, with an average value of 0.34 and a standard deviation of 0.03. 

Figure 8. Vertical profiles of dust optical properties at Ruoqiang averaged from 2:00 to 5:00 on
2 October 2020. Green and magenta lines represent profiles at 532 nm and 355 nm, respectively.
(a) extinction coefficients at 532 nm and 355 nm; (b) PDR at 532 nm and 355 nm; (c) extinction-related
Ångström exponent (355 nm/532 nm); (d) DMC presents dust mass concentration calculated using a
method proposed by Wang et al. (2021).

4. Discussion
4.1. Characteristics of Dust Optical Properties

To further understand the characteristics of dust properties, we investigated the
relationships among key optical properties of dust using two months’ observational data.
The selection of dust data is based on the aerosol temporal and spatial distribution and
PDR observed by lidar. Figure 9 presents the frequency histograms of δ

p
532 (green) and δ

p
355

(magenta) of dust aerosols during the observed period. It can be seen that δ
p
355 is mainly

concentrated in 0.2–0.3, with an average value of 0.25 and a standard deviation of 0.04. The
peak of PDR is located in the range of 0.225–0.25. For the range less than 0.15 and greater
than 0.3, the relative frequency of PDR at 355 nm is very small. The frequency distribution
characteristics of δ

p
532 are similar to those of δ

p
355, but mainly concentrated in the range of

0.3–0.375, with an average value of 0.34 and a standard deviation of 0.03.
Figure 10 shows relationships between the PDR and extinction coefficient (532 nm)

obtained from the polarization lidar from September to October 2020. The contoured color
at panels represents the number of points for each grid. We can see that they are mainly
distributed in the range of 0.1–0.4, and there is a strong linear correlation between the PDR
at 355 nm and 532 nm. The averaged extinction coefficient of 532 nm is 0.22 ± 0.04 km−1.
In particular, the extinction coefficient α532 increased with the PDR δ

p
532, indicating that

α532 of dust aerosol is positively correlated with non-sphericity. Analyzing the relationship
between α532 and δ

p
532/δ

p
355 is helpful for understanding the wavelength dependence of

α532, δ
p
532/δ

p
355 of dust aerosol is greater than 1, and mainly concentrated in 1.3–1.5, which

is consistent with the results reported by Huang et al. [67]. There is a negative correlation
between α532 and δ

p
532/δ

p
355. The α532 of dust aerosol is mainly about 0.15–0.3 km−1.
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Figure 10. Relationships between the PDR and extinction coefficient (532 nm) obtained from the
polarization lidar during September to October 2020 at Ruoqiang site (39.0◦N, 88.2◦E, 894 m).
(a) relationship between the PDR at 532 nm and the PDR at 355 nm; (b) relationship between the PDR
at 532 nm and extinction coefficients at 532 nm; (c) relationship between the δ

p
532/δ

p
355 and extinction

coefficient at 532 nm. The contoured color at panels represents the number of points for each grid,
and the total number of data points is 66, 300 for each panel.

To study the relation between PDR and the size of particles, the extinction-related
Ångström exponent (EAE) is used to analyze the data (as shown in Figure 11). It can be
seen that the average EAE is about 0.11 ± 0.24, indicating the size of particles is quite
large. The reason might be due to Ruoqiang being situated in the south-eastern part of
the TD. The linear relationship between EAE and δ

p
532 is not obvious, and δ

p
532 is mainly
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concentrated in 0.3–0.4. Nevertheless, EAE decreases with the increase of PDR, and the
size of dust particles with high non-sphericity is also large. In addition, δ

p
532/δ

p
355 slightly

increases with EAE. It is suggested dust particles with high nonsphericity, large particle
size and strong extinction can be observed at Ruoqiang. They can be lifted up to 3–5 km
height and transmitted to the Tibetan Plateau, which can change the albedo of glaciers
and snow, accelerate melting, and influence the radiation balance of the earth-atmosphere
system [68,69].
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Figure 11. Relationships between the PDR and extinction-related Ångström exponent (355 nm/532 nm)
obtained from the polarization lidar during September to October 2020 at Ruoqiang site (39.0◦N,
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grid, and the total number of data points is 66, 300 for each panel.

4.2. Comparison with Previous Studies

To compare our results with other previous reports, we summarize an overview
of dust PDR and the extinction-related Ångström exponent (EAE) for the TD and the
Sahara Desert in literature, as shown in Table 1. Hu et al. [70] reported that the PDR
was 0.28–32 (0.36 ± 0.05) at 355 (532) nm, and the particle size was also large with EAE of
−0.01 ± 0.30, observed by a Multi-wavelength lidar in Kashi located at the west of the TD.
For dust aerosols in Dushanbe, the averaged PDR was 0.18–0.29 at 355 nm and 0.31–0.35 at
532 nm [71,72]. In addition, for Sahara dust, the PDR was about 0.24–0.27 at 355 nm and
0.28–0.31 at 532 nm. Moreover, the EAE of dust was between −0.2 and 0.35 [58,63,73–76].
In this study, it is represented that our results are in general agreement with those of Asian
dust. The PDRs of dust aerosols are 0.25 ± 0.04 at 355 nm and 0.34 ± 0.03 at 532 nm. The
Ångström exponents related to extinction coefficient are 0.11 ± 0.24.
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Table 1. Summary of dust PDR and the extinction-related Ångström exponent (355 nm/532 nm)
observed by lidar in literatures.

Dust Source Location PDR
(355 nm)

PDR
(532 nm)

Ångström
Exponent

References

Taklimakan Desert

Kashi 0.28–0.32 0.36 ± 0.05 −0.01 ± 0.30 Hu et al., 2020 [70]
Dushanbe 0.24 ± 0.003 0.33 ± 0.04 0.1 ± 0.2 Hofer et al., 2020 [71]
Dushanbe 0.18–0.29 0.31–0.35 −0.08–0.12 Hofer et al., 2017 [72]
Ruoqiang 0.25 ± 0.003 0.34 ± 0.04 0.11 ± 0.24 This study

Saharan Desert

Barbados 0.25 ± 0.03 0.28 ± 0.02 – Haarig et al., 2017 [63]
Mbour – 0.3 ± 0.045 −0.2~0.2 Veselovskii et al., 2016 [73]

Cape Verde 0.24–0.27 0.29–0.31 – Groß et al., 2011 [74]
Cape Verde – 0.31 ± 0.1 0.2 ± 0.3 Tesche et al., 2011 [76]

Évora – 0.28 ± 0.04 0.0 ± 0.2 Preißler et al., 2011 [75]
Ouarzazate – 0.31 ± 0.02 0.04–0.35 Freudenthaler et al., 2008 [58]

5. Conclusions

To investigate the vertical structure of dust aerosols, we conducted a ground-based
observation by use of a multi-wavelength Mie polarization lidar which was designed for
continuous network measurements at Ruoqiang site in TD. The lidar system was developed
with the ability to detect the total backscattering signals at 1064 nm, 532 nm and 355 nm
simultaneously, and achieve polarization measurements both at visible and ultraviolet
wavelengths. Based on the lidar observations from September to October 2020, we analyzed
the vertical distribution of dust aerosols.

We found dust aerosols can be lifted up to 3–5 km from the ground, which is com-
parable with the elevation of the Tibetan Plateau in autumn (with a mass concentration
of 400–900 µg m−3). The dust layer is quite thick with an obvious and complex structure
for some dust cases. The PDR of the lifted dust aerosols is 0.34 ± 0.03 at 532 nm and
0.25 ± 0.04 at 355 nm, respectively. The extinction-related Ångström exponents are very
small (0.11± 0.24). The extinction coefficient of dust layer aerosol is positively correlated
with non-sphericity. Moreover, the ratio of depolarization ratios at visible and ultraviolet
wavelengths (δp

532/δ
p
355) is 1.37 ± 0.12, and has a negative correlation with the extinction

coefficient of dust.
Many studies have shown that glaciers and snow near dust sources are vulnerable

to dust particles, especially in Asia [77,78]. Coarse dust particles with high extinction
coefficients probably have larger impacts on the melting of snow and glaciers [79,80]. This
study showed that such dust particles in the TD can be lifted up to the Tibetan Plateau,
implying the importance of evaluating their influence on the snow melting and radiation
budget in the future.
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